Modeling Intrinsic Detection Latency and Timing Jitter in SNSPDs

J. P. Allmaras^{1,4,*}, B. A. Korzh¹, Q-Y. Zhao³, S. Frasca¹, E. Ramirez¹, E. Bersin^{1,3}, M. Colangelo³, D. Zhu³, A. E. Dane³, E. E. Wollman¹, F. Marsili¹, M. D. Shaw¹, K. K. Berggren³ and A. G. Kozorezov²

- 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- 2. Department of Physics, Lancaster University, Lancaster, UK
- 3. Massachusetts Institute of Technology, Cambridge, MA, USA
- 4. Applied Physics, California Institute of Technology, Pasadena, CA, USA
- * jallmara@caltech.edu

Toward Semi-Quantitative Modeling of SNPSD Physics

- Why bother?
 - Optimized device design requires the ability to predict response in different geometries, bias conditions, photon energies
- Metrics for Comparison:
 - PCR curves: energy dependence, shape
 - Intrinsic Jitter: energy and bias dependence
 - Relative Latency: energy and bias dependence

Toward Semi-Quantitative Modeling of SNPSD Physics

- Why bother?
 - Optimized device design requires the ability to predict response in different geometries, bias conditions, photon energies
- Metrics for Comparison:
 - PCR curves: energy dependence, shape
 - Intrinsic Jitter: energy and bias dependence
 - Relative Latency: energy and bias dependence

Model: TDGL + Electrothermal Equations

2 Temperature Electrothermal Equations

$$\frac{\partial}{\partial t} \left(\frac{\pi^2 k_B^2 N(0) T_e^2}{3} - E_0 \mathcal{E}_S(T_e, |\Delta|) \right) = \nabla \kappa_S(T_e, |\Delta|) \nabla T_e - \frac{96 \zeta(5) N(0) k_B^2}{\tau_0} \frac{T_e^5 - T_{ph}^5}{T_c^3} + \vec{J} \vec{E}$$

$$\frac{\partial T_{ph}^{4}}{\partial t} = -\frac{T_{ph}^{4} - T_{sub}^{4}}{\tau_{esc}} + \gamma \frac{24\zeta(5)}{\tau_{0}} \frac{15}{\pi^{4}} \frac{T_{e}^{5} - T_{ph}^{5}}{T_{c}}$$

Modified Time-Dependent Ginzburg-Landau Equations (TDGL)

$$\begin{split} \frac{\pi\hbar}{8k_BT_c} \Big(\frac{\partial}{\partial t} + \ \frac{2ie\varphi}{\hbar}\Big) \Delta &= \ \xi_{mod}(T_e)^2 \Big(\nabla - \frac{2ie}{\hbar c}A\Big)^2 \Delta + \\ & \Big(1 - \frac{T_e}{T_c} - \frac{|\Delta|^2}{\Delta_{mod}(T_e)^2}\Big) \Delta + i \frac{div \ \vec{\jmath}_S^{US} - div \ \vec{\jmath}_S^{GL}}{|\Delta|} \frac{\hbar D}{\sigma_n \sqrt{2}\sqrt{1 + T_e/T_c}} \end{split}$$

$$-\sigma_n \nabla^2 \varphi = -div \vec{j}_s^{Us}$$
 Current Conservation

• Solves the time evolution of Order Parameter (Δ), Electric Potential (φ), Temperatures (T_e , T_{ph})

D. Vodolazov, *Phys. Rev. Appl.*, **7**, 034014 (2017).

Model Predictions

- Qualitatively consistent with previous literature
 - Detection energy shifts from 'Bell' to 'W' as bias current decreases
- Parameters:

```
W = 100 \text{ nm}

T_c = 8.65 \text{ K}

d = 7 \text{ nm}

\rho_{sq} = 587.5 \Omega_{sq}

T_{sub} = 4 \text{ K}

\tau_{ep}(T_c) = 16 \text{ ps } (10\text{K}/8.65\text{K})^3 = 24.7 \text{ ps}

\tau_{esc} = 25 \text{ ps}

D = 0.5 \text{ cm}^2/\text{s}

I_{dep}(0) \sim 33.4 \text{ }\mu\text{A}
```


Importance of Detection Latency

 Formulation using standard TDGL equations predicts latency difference much shorter than observed experimentally

Generalized TDGL Equations

- Extends the standard TDGL equations to allow for finite energy gap
 - Includes scattering parameter which modifies the rate of order parameter evolution

$$\frac{\pi\hbar}{8k_BT_c}\left(\varrho\left(T_e\right)\frac{\partial}{\partial t}\left|\Delta\right| + \frac{i\left|\Delta\right|}{\varrho\left(T_e\right)}\frac{\partial}{\partial t}\phi + \frac{2ie\left|\Delta\right|}{\varrho\left(T_e\right)\hbar}\varphi\right) = \xi_{mod}\left(T_e\right)^2\left(\nabla + i\left(\nabla\phi - \frac{2e}{\hbar c}A\right)\right)^2\left|\Delta\right| + \left(1 - \frac{T_e}{T_c} - \frac{\left|\Delta\right|^2}{\Delta_{mod}^2\left(T_e\right)}\right)\left|\Delta\right| \\ + i\frac{\left(\nabla\cdot\vec{j}_s^{Us} - \nabla\cdot\vec{j}_s^{GL}\right)}{\left|\Delta\right|}\frac{\hbar eD}{\sigma_n\sqrt{2}\sqrt{1 + T_e/T_c}}$$
 Time evolution scale factor Inelastic scattering time

We retain the modifying terms added by Vodolazov (2017)

Watts-Tobin et al., J. Low Temp. Phys. 42, 459 (1981)

Kopnin, Theory of Nonequilibrium Superconductivity (2001)

Generalized TDGL Equations

- Extends the standard TDGL equations to allow for finite energy gap
 - Includes scattering parameter which modifies the rate of order parameter evolution

$$\frac{\pi\hbar}{8k_BT_c}\left(\varrho\left(T_e\right)\frac{\partial}{\partial t}\left|\Delta\right| + \underbrace{\frac{i\left|\Delta\right|}{\varrho\left(T_e\right)}\frac{\partial}{\partial t}}\phi + \underbrace{\frac{2ie\left|\Delta\right|}{\varrho\left(T_e\right)}\hbar}\varphi\right) = \xi_{mod}\left(T_e\right)^2\left(\nabla + i\left(\nabla\phi - \frac{2e}{\hbar c}A\right)\right)^2\left|\Delta\right| + \left(1 - \frac{T_e}{T_c} - \frac{\left|\Delta\right|^2}{\Delta_{mod}^2\left(T_e\right)}\right)\left|\Delta\right| + i\underbrace{\frac{\left(\nabla\cdot\vec{j}_s^{Us} - \nabla\cdot\vec{j}_s^{GL}\right)}{\left|\Delta\right|}}_{\left|\Delta\right|} \frac{\hbar eD}{\sigma_n\sqrt{2}\sqrt{1 + T_e/T_c}}$$

$$\frac{\rho\left(T_e\right) = \sqrt{1 + \left|\Delta\right|^2\tau_{sc}\left(T_e\right)^2/\hbar^2}}{\ln \left(1 + \frac{1}{2}\right)^2} \xrightarrow{\text{Time evolution scale factor}}_{\text{Inelastic scattering time}}$$

We retain the modifying terms added by Vodolazov (2017)

Watts-Tobin et al., J. Low Temp. Phys. 42, 459 (1981)

Kopnin, Theory of Nonequilibrium Superconductivity (2001)

- Neglects 2D effects in favor of understanding the timescale of order parameter suppression during detection
- 'Hotbelt' initial conditions
- Deterministic evolution based on initial conditions
- Jitter caused by Fano fluctuations

- Neglects 2D effects in favor of understanding the timescale of order parameter suppression during detection
- 'Hotbelt' initial conditions
- Deterministic evolution based on initial conditions
- Jitter caused by Fano fluctuations

- Neglects 2D effects in favor of understanding the timescale of order parameter suppression during detection
- 'Hotbelt' initial conditions
- Deterministic evolution based on initial conditions
- Jitter caused by Fano fluctuations

- Neglects 2D effects in favor of understanding the timescale of order parameter suppression during detection
- 'Hotbelt' initial conditions
- Deterministic evolution based on initial conditions
- Jitter caused by Fano fluctuations

Latency Comparison – Scattering Time

Histogram Comparison $I_{B} = 15 \mu A$ 0.5 0.

Korzh et al. arXiv:1804.06839

Latency Comparison - Scattering Time

- Introduction of latency + Fano fluctuations qualitatively describes all observed behavior in narrow devices
- 1D model fails over a more extended range of photon energies
- 1D model fails for wider nanowires

Korzh et al. arXiv:1804.06839

Vortex formation and motion

Lower Energy – Slower Detection

Higher Energy – Faster Detection

120 nm Wide Device: Model Results

- Generalized TDGL predicts correct latency order of magnitude
- Inadequate match to experimental *PCR*
 - Additional structure
 appears in simulation
 due to 2D effects

120 nm Wide Device: Model Results

- Correct qualitative trend of PCR curves:
 - Narrowing transition for increased energy,
 - Broadening for extremely high energy (UV)
- Predicts 'shoulder' in high energy jitter histogram for low I_B

Experiment

Normalized Counts 70 9.0 8.0

0.2

-20

-10

 $I_{\rm bias} = 15 \ \mu \rm A$

Time Delay (ps)

Normalized Counts 9.0 8.0

-10

Concluding Remarks

- Experimentally able to measure intrinsic jitter, and relative latency, providing information on the timescale of detection
- Model captures qualitative behavior: PCR trends, jitter histogram shape
- Generalized TDGL matches timescale relative latency, unlike the standard TDGL model

 Successful microscopic model must predict 3 metrics: PCR, timing jitter, and relative latency

Karl K. Berggren Leonid Levitov

Marco Colangelo

Emily Toomey NSF Fellowship

Di Zhu A* STAR Fellowship

Andrew Dane*

Reza Baghdadi Post-doc

Ilya Charaev

Matt Shaw

Andrew Beyer

Alexander Kozorezov

Eric Bersin* **Edward Ramirez** Garrison Crouch* *NSTRF/NASA fellowships

Jason Allmaras* Simone Frasca

Boris Korzh Post-doc

Emma Wollman

Backup Slides

Sources of Timing Jitter

Timing Jitter: Uncertainty in the arrival time of a detected photon

- Noise Jitter electrical noise combined with finite slew rate leads to timing uncertainty
- Geometric Jitter different propagation delays of electrical signal along length of nanowire based on absorption site
- Inhomogeneity Induced Jitter latency changes due to differing nanowire properties at different locations
- Fano Fluctuations latency changes based on the energy retained in the nanowire during detection process
- Transverse Coordinate Jitter latency changes with the absorption site along transverse width of nanowire
- Additional Fluctuations fluctuations during the detection event may influence the time of vortex/phase slip entry

Zhao et al, Nat. Photonics 11, 247 (2017)

Sources of Timing Jitter

Timing Jitter: Uncertainty in the arrival time of a detected photon

- Noise Jitter electrical noise combined with finite slew rate leads to timing uncertainty
- Geometric Jitter different propagation delays of electrical signal along length of nanowire based on absorption site
- Inhomogeneity Induced Jitter latency changes due to differing nanowire properties at different locations
- Fano Fluctuations latency changes based on the energy retained in the nanowire during detection process
- Transverse Coordinate Jitter latency changes with the absorption site along transverse width of nanowire
- Additional Fluctuations fluctuations during the detection event may influence the time of vortex/phase slip entry

Experimental Approach

- Cosmic Microwave
 Technology CITLF1 & CITLF3
 - Noise temperature: < 6 K</p>
 - Gain: ~40 dB
 - 4 K operation
- 5 μm nanowire length
 - Geometric jitter < 1 ps</p>
- Free space coupling to eliminate dispersion in fiber which broadens optical pulse

Korzh et al. arXiv:1804.06839

Experimental Setup

 Doubling crystals allow measurement of relative delay between two photon energies

Results: Intrinsic Jitter

 Energy and operating temperature dependence of jitter suggests effects intrinsic to the detection process dominate the jitter

Korzh et al. arXiv:1804.06839

Results: Intrinsic Jitter

 Energy and operating temperature dependence of jitter suggests effects intrinsic to the detection process dominate the jitter

Korzh et al. arXiv:1804.06839

Results: Relative Latency

- Relative latency measured for 1550/775 nm energies for 60 to 120 nm widths
 - Range of relative latency is independent of width

Results: Relative Latency

- Addition of 1064/532

 nm pair shows a
 shorter latency
 difference compared to
 1550/775
- Qualitative connection between PCR, jitter, and latency shapes

Model: Stages of Detection

Model: Stages of Detection

Simplifying Assumptions:

- All fluctuations occur during downconversion (Fano fluctuations) resulting in different amounts of energy deposited in the superconductor
- Ignores cascade/thermalization jitter
- Ignores fluctuations during suppression of superconductivity
- Ignores inhomogeneity in the nanowire